Drug-Device Combination Products for Inhalation Route

Hugh D C Smyth, Ph.D.
The University of Texas at Austin

Mini Symposium: Combination Products and Innovation in Drug Delivery Systems
Inhalation Aerosols: Levels of combination

Drug

Drug + Device

Drug A + Drug B + Device

Drug A + Drug B + Device A + Device B

Inhalation Aerosols: Levels of combination
<table>
<thead>
<tr>
<th>Device Type</th>
<th>Sub Categories</th>
<th>Design Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebulizers</td>
<td>Air Jet, Ultrasonic, Vibrating Mesh</td>
<td></td>
</tr>
<tr>
<td>Mechanical Aqueous Sprays</td>
<td>Silicon Wafer Based Nozzle, Laser Machined Nozzles</td>
<td></td>
</tr>
<tr>
<td>Pressurized Metered Dose Inhalers</td>
<td>HFA based</td>
<td></td>
</tr>
<tr>
<td>Dry Powder Inhalers</td>
<td>Multidose Reservoir, Multidose Premetered Capsule</td>
<td></td>
</tr>
<tr>
<td>Evaporation Condensation</td>
<td>Single Use Disposable, User Controlled Dosing</td>
<td></td>
</tr>
</tbody>
</table>

Inhalation Aerosols: A large extended family
Focus of this presentation: Drug-Device Combinations
Outline

• Pulmonary drug delivery elevator pitch, (why marry?)

• Target product profiles and device selection.

• Dry powder inhaler drug device combinations
 • How formulations influence performance.
 • Device design; improving performance via knowledge of dispersion mechanisms – the marriage

• The honeymoon: happy marriages through independence
Pulmonary Route is Attractive

- Local targeting / administration
 - Onset
 - Dose
- Large surface area
- Thin epithelial barrier
- High blood flow (5 L/min)
- Metabolic advantages

Physiological/Anatomical Barriers

- Particles larger than 5 µm not deposited efficiently
- Mucociliary and cough clearance rapidly remove foreign particles
- Particles smaller than 1 µm are readily exhaled

Target product profiles and device selection

- Dose
- Drug physicochemical properties
- Stability / Compatibility
- Therapeutic window
- COGS
- Patient factors
- Barriers to entry

1. Jay Holt, Inhalation Report
Designing Inhalation Aerosols

- Aerodynamic particle size limitations: 0.5 - 5 microns

- Physics of generating aerosols in this range is challenging
 - Aqueous aerosols: significant energy required to induce droplet breakup / atomization
 - Powder aerosols: significant energy required to overcome interparticulate forces
 - Propellant aerosols: force for atomization within formulation, yields fast dynamic plumes

How formulations influence performance.

- What is formulation performance?
 - Aerosol efficiencies (fine particle fraction, emitted dose)
 - Fine particle fraction, FPF = respirable drug / emitted drug
 - Respirable fraction, RF = respirable drug / loaded drug
 - Flowability
 - Blend uniformity
Dry Powder Inhalation Systems

Fine Drug Particles
100-500 µg
Asthma, COPD

Lactose “Carrier” Particles
(60-90 µm)

Blending

Binary Blend
(<2% Drug)

Lactose Particle

Drug Particles

Carriers are multifunctional:
Dose metering
Powder flowability
Entrainment and Dispersion
Overcome cohesive forces between micronized drug
Adhesion forces dominate

<table>
<thead>
<tr>
<th>Force</th>
<th>Approx. magnitude*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals Electrostatic</td>
<td>10^{-9} to 10^{-7} N</td>
</tr>
<tr>
<td>Capillary</td>
<td>10^{-18} to 10^{-10} N</td>
</tr>
<tr>
<td>Mechanical interlocking/solid bridging</td>
<td>Material dependent</td>
</tr>
</tbody>
</table>

Smyth & Hickey, 2005
Respirable powders are cohesive

DPI Performance

<table>
<thead>
<tr>
<th>% of Dose</th>
<th>Aerolizer</th>
<th>Handihaler</th>
</tr>
</thead>
</table>

Flow Rate Dependence

<table>
<thead>
<tr>
<th>% of Dose</th>
<th>RF</th>
<th>FPF</th>
<th>Throat</th>
</tr>
</thead>
</table>

- 30 L/min
- 60 L/min
Formulation factors

- Particle/Powder surface energetics and blending (Saleem et al., 2008)
- Static characterization (Hickey et al., 2007a)
- Dynamic characterization (Hickey et al., 2007b)
- Detachment Forces (Selvam et al., 2010)
- Tuning of formulations (Donovan et al. 2009)
- Modulating drug-carrier forces (Selvam & Smyth, 2010)
- Inhaler Device Design (Selvam et al. 2010, Donovan et al. 2012)
- Carrier Particles (Donovan et al. 2010).
- Carrier particle roughness & size (Du, Du, Smyth, 2014)
Effects of Carrier Particle Size on DPI Performance

- Increasing Carrier Particle Size → Reduced Performance
Previous Lactose Carrier Particle Studies:

Dickhoff, 2005
Lahhib, 1999
Kawashima, 1998
Kassem, 1990
Steckel, 2006
Dickhoff, 2003
Zeng, 2001
Steckel, 1997
Kassem, 1989

Carrier Particle Sieve Fraction (μm)

- Lactose Monohydrate
- Spray Dried Lactose
- Anhydrous Lactose
- Granulated Lactose
Systematic Evaluation of Carrier Systems

α-Lactose Monohydrate

Anhydrous Lactose

Spray Dried Lactose

Granulated Lactose
Lactose Monohydrate Conformed With Previous Studies

α-lactose Monohydrate

Respirable Fraction (%)

Carrier Particle Sieve Fraction (um)

< 20 20 - 32 32 - 45 45 - 63 63 - 75 75 - 90 90 - 106 106 - 125 125 - 150 150 - 180 180 - 212 212 - 250 250 - 300
But, Larger Lactose Carrier Diameters Can Improve Performance

Size And Roughness Are Interrelated

Shift in the predominant detachment mechanism

Fluid Forces \rightarrow Mechanical Forces

Smooth lactose

Rough lactose

Donovan & Smyth, 2010
Lead To The Hypothesis: Significant Detachment Forces Arise From Particle Collisions

- Additional Evidence
 - CFD studies on particle inhaler collisions
 - Donovan et al. 2011
 - Flow rate dependency studies
Simulations Agreed with Experiments: Inhalers With Greater Particle Collisions Perform Better With Larger Carriers

Donovan et al. 2011
Flow rate improvement of large carrier particle dispersion

- Larger carrier particles produce greater collisions forces due to their increased size, and thus, momentum

- Momentum, $p = m \cdot v$
Studies on marrying device modifications to optimize formulation performance

See following posters presented

R6042 - Evaluation of Granulated Lactose as a Carrier for High Drug Loaded DPI Formulations, (Author: Ping Du)
R6041 - Effect of Device Design on Granulated Lactose Based DPI Formulations, (Authors: Ju Du, Ping Du)

Formulation
- Design of granulated lactose carriers
- Increased drug loading
- Improved powder flow
- Optimization of blend uniformity vs carrier particle size

Device
- Capsule piercing
- Device geometry
The future: formulation independent performance?

• Very few formulations and particle engineering technologies allow optimum performance in an off-the-shelf device

• Next part of presentation:
 • Device technologies can free the inhalation system from subtleties of formulation
But, Larger Lactose Carrier Diameters Can Improve Performance

Adhesion vs Detachment Forces

- Adhesive force has a linear dependence on diameter
- Impaction force has an exponential dependence on size

Why were our findings of carrier particle size vs performance different?

\[F_{\text{adhesion}} = \frac{A_H d_1 d_2}{12D^2(d_1 + d_2)} \]

\[m = \frac{\rho \pi d^3}{6} \]
Single Large Carrier (SLC™) Delivery Mechanism is Traditional “Carrier” Free

SLC™ Coated Sphere

Design Paradigm: “Bigger is Better”

- Sudden flow-stream expansion develops low pressure zone near inlet = bead oscillation
- Drug released by oscillating momentum transfer
- No barrier contact needed to detach drug
SLC-DPI™ Prototype - Superior Single Drug Delivery Efficiency vs. Existing DPI

Fluticasone Propionate
SLC DPI Efficiency - Independent of Patient Inhalation Effort vs. commercial DPI

Fixed Dose Combination DPI Product

- Drug A
- Drug B

Pressure Drop (ΔP)

Delivery Efficiency (%)

1 kPa 2 kPa

Respira SLC DPI Prototype

* Data shown are means ± 1 Std Dev, n=3 tests
Delivery Efficiency Maintained Across Multiple APIs / Classes

- SLC DPI Prototype Test Results

<table>
<thead>
<tr>
<th>API</th>
<th>Dose / Bead</th>
<th>FPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budesonide</td>
<td>215 mcg</td>
<td>83% (2%)</td>
</tr>
<tr>
<td>Mometasone Furoate</td>
<td>140 mcg</td>
<td>81% (1%)</td>
</tr>
<tr>
<td>Fluticasone Propionate</td>
<td>112 mcg</td>
<td>81% (2%)</td>
</tr>
<tr>
<td>Albuterol Sulphate</td>
<td>81 mcg</td>
<td>91% (2%)</td>
</tr>
<tr>
<td>Salmeterol</td>
<td>36 mcg</td>
<td>89% (3%)</td>
</tr>
<tr>
<td>Tiotropium Bromide</td>
<td>20 mcg</td>
<td>85% (2%)</td>
</tr>
</tbody>
</table>

In vitro cascade impactor testing - Flow Rate = 90 L/min (2kPa)
Mean (± std. deviation) for N = 3
Scintigraphy studies confirm high lung deposition

Handihaler

Handihaler Lactose 23% Lung Deposition

Stomach

Bead 53% Lung Deposition

SLC DPI

Same Patient Cross-Over Study Result – Tc99m Albuterol
Axial Oscillating Sphere (AOS™) Drug Powder Deaggregation Technology

PURE DRUG POWDERS

(1 – 5 µm)

Or, Lactose Blends

Drug Particles

(1 – 5 µm)

Lactose “Carrier” Particles

(60 – 90 µm)

HIGH-EFFICIENCY DRUG DE-AGGREGATION

Bead Remains in the Inhaler

AOS Powder Deaggregator

- Enables delivery of high payloads
- Pure drug or existing blend formulations
- 70+% of drug leaving inhaler is delivered to lung
- <30% of drug delivered to oropharynx
AOS Enhances Performance in Capsule System

- **Handihaler® vs. Handihaler capsule system + AOS-DPI**

- 20 mg capsule fill of 20% API/lactose blend

- **AOS enhances % FPF by 2.9X**

- **Emitted dose not impacted**

<table>
<thead>
<tr>
<th>Device</th>
<th>Emitted Dose (mcg)</th>
<th>%FPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handihaler</td>
<td>256.6 (7.4)</td>
<td>22.8</td>
</tr>
<tr>
<td>Handihaler capsule system + AOS</td>
<td>251.9 (7.0)</td>
<td>67.1</td>
</tr>
</tbody>
</table>

20mg - 20% API blend, 4KPa
AOS Enhances Performance in Blister System

- **Flovent Diskus® + AOS**
 - 1.5X increase in % FPF
 - ED not impacted

- **AOS-DPI enhances performance of existing formulations in blister system**

<table>
<thead>
<tr>
<th>Device</th>
<th>Emitted Dose (mcg)</th>
<th>%FPF 4kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flovent Diskus</td>
<td>256.6 (7.4)</td>
<td>26.4±1.0</td>
</tr>
<tr>
<td>Flovent Diskus + AOS</td>
<td>251.9 (7.0)</td>
<td>40.0±1.4</td>
</tr>
</tbody>
</table>

AOS Enhances Performance in Blister System
Ready to tie the knot?

• Acknowledgements
 • Ping Du, MS
 • Ju Du, MS
 • Dr Parthiban Selvam
 • Dr. Martin Donovan
 • Dr Aileen Gibbons
 • Dr Zhen Xu, Respira Therapeutics
 • Bob Curtis, CEO, Respira Therapeutics

• The author(s) of this presentation consults and also holds stock in for Respira Therapeutics. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research.