Regulatory Perspectives in Developing Therapeutic Proteins with Novel Scaffolds – Translational strategy

AAPS/ASCPT Joint Symposium:
Integrated Translational Strategies for More Efficient Development of Biotherapeutics with Novel Protein Scaffolds

Yow-Ming C. Wang, Ph.D.
Biologics Team Leader, Division of Clinical Pharmacology III,
Office of Clinical Pharmacology, Office of Translational Sciences
Center for Drug Evaluation and Research, Food and Drug Administration
Disclaimer

• The presentation today should not be considered, in whole or in part as being statements of policy or recommendation by the United States Food and Drug Administration.

• Throughout the talk, representative examples of commercial products may be given to illustrate a methodology or approach to problem solving. No commercial endorsement is implied or intended.
Upfront summary of key messages

• Bispecific molecules are new because they interact with more than one target; however, many of the targets are not new.
• Many bispecific molecules are derived based on the successes (or limited success) of existing therapeutic proteins.
• Past experience with therapeutic proteins can be leveraged.
• New issues can be anticipated due to new mechanisms of action.
• Calls for building upon prior knowledge to aim for
 – Understanding of differences between hitting one target vs. two targets,
 – Further exploration of biomarkers in relation to clinical outcomes, and
 – Exploring more complex translational strategy for data integration.
• Clinical pharmacology question-based review (QBR) still applies, i.e., similar considerations in regulatory review.
Overview

• Introduction
 – The general drug development paradigm
 – ‘Old’ novel scaffolds of therapeutic proteins

• Bispecific molecules, what’s new?

• Translational challenges and opportunities
 – Animal → human, clinical PK-PD data integration
 – A case example illustrating the complexity of PD effects

• Last but not least...
 – Bioanalytical assays
 – Immunogenicity impact assessments

• Summary
Drug development paradigm

Drug Dev Phases

Pre-IND

IND

NDA

Preclinical Development

Discovery Research & Preclinical Development

Phase 1 / FIH, MD

Phase 2 / Proof of Concept

Phase 2 / Dose ranging

Phase 3 / Pivotal Trials / Extension safety Trials

Phase 4 / Post-marketing Trials

PK & PD + Clinical Response

Pharmacology (PD)

In vitro

In vivo

PK

Tox & TK

Preclinical Development – safety studies

• Exposure (animal)
• Safety
• Response
• PK-PD Modeling
• Human exposure projection

FIH dose selection

dose selections

Dosing recommendation for labeling

Learn and confirm

Information

Impact

Go/No-Go

Clinical response

Exposure (short term)

Safety

Biomarker PD

PK-PD Modeling (exposure response)

Exposure (longer term)

2015 AAPS - YM Wang
Approval milestones for novel therapeutic proteins

• 1982 – recombinant human insulin (Eli Lilly) *
 – Predecessor: 1922 first medical use of insulin extracted from dogs
• 1986 – muromonab, OKT3, a murine mAb (Ortho) – anti-CD3
• 1989 – recombinant human erythropoietin (Amgen)
• 1994 – abciximab, a chimeric mAb (J&J)
• 1998 – palivizumab, a humanized mAb (MedImmune)
• 1998 – etanercept, a Fc-fusion protein (Amgen)
 – Concept from 1984, first description of CD4-Fc fusion protein
• 2000 – gemtuzumab ozogamicin, Mylotarg, an ADC, antibody-drug-conjugate (Pfizer)
• 2002 – adalimumab, a human mAb (Abbott)
• 2014 – blinatumomab, a BiTE, bispecific scFv of murine origin (Amgen)

New novel scaffolds of bispecific molecules:
targeted therapy + “something more” → aim to achieve greater efficacy

Source: Drugs@FDA website (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Search_Drug_Name)
* http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SelectionsFromFDLICurrentSeries/FDAHistory/ucm081964.htm
New novel scaffolds in concept

Kontermann (2012) MAbs
Examples of dual targets for bispecific molecules

<table>
<thead>
<tr>
<th>Cell surface antigens (target cell x effector cell)</th>
<th>Cell surface antigens</th>
<th>Soluble ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>EpCAM x CD3</td>
<td>HER2 x HER3</td>
<td>TNFα x IL-17</td>
</tr>
<tr>
<td>CD19 x CD3</td>
<td>EGFR x HER3</td>
<td>IL-17A x IL-17F</td>
</tr>
<tr>
<td>CEA x CD3</td>
<td>####### x tissue antigen</td>
<td>IL-1α x IL-1β</td>
</tr>
<tr>
<td>CD123 x CD3</td>
<td></td>
<td>IL-4 x IL-13</td>
</tr>
<tr>
<td>CD20 x CD3</td>
<td></td>
<td>Ang-2 x VEGF-A</td>
</tr>
</tbody>
</table>

Mechanism of action

- Redirecting effector cells to target cells (e.g., cancer cells)
- Simultaneous removal of soluble ligands
- Binding to dual antigens on target cells
- Targeted delivery to tissues with a specific antigen
Dual targets for bispecific molecules

Simultaneous removal of two pro-inflammatory cytokines (IL-4 x IL-13)

Oh (2010) Eur Respir Rev

IL-13Rα2 – a negative regulator
Dual targets for bispecific molecules

Bring effector cells close to tumor cells
(\text{CD19} \times \text{CD3})

Overcome tumor resistance w/ dual targeting
(\text{HER2} \times \text{HER3})

Vu (2012) Front Oncol
Some mAbs can engage effector cells - as part of the mechanisms of action

Weiner et al. (2010) Nature Review Immunology
Bispecific molecules, what’s new?
- relative to ‘old’ novel scaffolds of therapeutic proteins

• They are new because they interact with more than one target; however, many of the targets are not new.
• They have new mechanisms of action.
 – in some cases, enhanced delivery to target tissues
• They aim for the same ultimate clinical outcomes, e.g.,
 – kill cancer cells, tumor regression, survival,
 – suppress inflammation, reduce signs & symptoms, disease remission
• Their benefit-risk considerations are also disease-dependent.
• They have same ultimate goal for the development programs.
 – give the right drug, to the right patient, at the right dose and the right time
Pre-IND focuses on FIH dose selection

Drug Dev Phases

- Discovery Research & Preclinical Development
- Phase 1 / FIH, MD
- Phase 2 / Proof of Concept
- Phase 2 / Dose ranging
- Phase 3 / Pivotal Trials / Extension safety Trials
- Phase 4 / Post-marketing Trials

Preclinical Development – safety studies

Studies

- Pharmacology (PD)
 - In vitro
 - In vivo
- PK
- Tox & TK

PK & PD + Clinical Response

Information

- Exposure (animal)
- Safety
- Response
- PK-PD Modeling
- Human exposure projection

Impact

- Go/No-Go

Learn and confirm

FIH dose selection

dose selections

Dosing recommendation for labeling

• Clinical response
• Exposure (longer term)

2015 AAPS - YM Wang
Common translational challenges

• Human PK-PD projection can be challenging; for instance, if targets are specific to humans.
 – Surrogate molecules are needed for preclinical studies.
 – Relevance of animal data to humans may be unclear (both toxicity and PK)
• MABEL determination can be challenging.
 – Relevance of animal PD data to effects in humans may be unclear.
 – May need to consider a multitude of in vitro and in vivo data.
• Anticipation of cytokine release syndrome may be needed.
 – Examples*: catumaxomab, blinatumomomab, MEDI-565, ... etc.
• A conservative approach to selecting doses for FIH study may be warranted.

During clinical development — focuses on data integration to support dose selections

Drug Dev Phases

- Preclinical Development
- Discovery Research & Preclinical Development

Phases

- Phase 1 / FIH, MD
- Phase 2 / Proof of Concept
- Phase 2 / Dose ranging
- Phase 3 / Pivotal Trials / Extension safety Trials
- Phase 4 / Post-marketing Trials

Preclinical Development — safety studies

Studies

- Pharmacology (PD) In vitro In vivo
- PK
- Tox & TK

PK & PD + Clinical Response

Information

- Exposure (animal)
- Safety
- Response
- PK-PD Modeling
- Human exposure projection

Impact

- Go/No-Go

Learn and confirm

FiH dose selection

Dose selections

Harmonized, phase-appropriate data

Clinical response

Dosing recommendation for labeling

Supplements

BLA

NDA

Pre-IND

IND

BLA Supplements

2015 AAPS - YM Wang
Past experience can be leveraged (PK modeling)

Gao et al (2014) JPP
Past experience can be leveraged (PK modeling)

- Translating plasma concentration to tissue/cellular concentration
 - Tissue-targeted delivery
 - Intracellular target site

Krippendorff et al. (2009) JPP
Past experience can be leveraged (PK-PD modeling)

Salphati (2010) Drug Metab Dispos
Dayneka et al. (1993) JPB
PK-PD data integration challenges
- to support dose ranging and dose selection

• In principle, use of PD endpoints is more efficient for dose-ranging and exploration of E-R relationship.
• New mechanisms of action may require new tools (assays, markers, models, analyses ...).
• Major challenge may be in finding suitable PD markers.
 – Biochemical/PD markers may be many.
 – Relevance to clinical outcomes may or may not be established.
 – PD marker levels in target tissues vs. in plasma.
• If no suitable PD markers are identified, may need to rely on clinical efficacy endpoints; a suboptimal situation.
• Nonetheless, foundational knowledge from existing products against each of the individual targets would be useful for development programs of bispecific molecules.
Example of PK-PD integration challenges
- Example: blinatumomab (approved Dec. 2014)

- New mechanisms of action: anti-CD19 x anti-CD3
- Engages effector T cells and cancer cells (B cells)
- Leading to numerous PD effects, among them
 - T cell activation \rightarrow lyse B cells \rightarrow B cell depletion
 - One activated T cell can lyse multiple target B cells
 - T cell expansion \rightarrow change of EC50 over time
 - Effector/target cell ratio changes over time
- PD markers
 - T cells (activation, redistribution, and expansion),
 - B cell (depletion),
 - cytokines (rise and fall, cycle-dependent magnitude)

- Overall PD effects are complex

Nagorsen, et al. (2012) Pharmacol Ther; Drugs@FDA, Clinical pharmacology review of BLA
Example of PK-PD integration challenges
- blinatumomab case example (cont’d)

- Cytokine release (dose-dependent & cycle-dependent)
 - mitigated by glucocorticoids pre-medication
- Safety profile differed with infusion durations
 - Infusion for hours vs. weeks (better)
- CNS events seems to be dependent on the ratio of B/T cells (low → worse)
 - Reversible and mitigated by double-step dosing in cycle 1
- Exposure-response (E-R) relationship for B cell depletion has limitations because baseline B cell counts may be a confounding factor in clinical study.
 - Considerable variability across individuals in target B cell levels

- The pharmacodynamic complexity may need innovative approaches for data integration; e.g., systems pharmacology approach, multiple models to address different questions.

Bioanalytical assays for drug concentrations

• **Keystones to clinical pharmacology program**
 – A continuum through all phases of research & development

• **Are the measured concentrations useful for E-R correlation?**

• Does the assay measure active moiety with bispecific functionality intact?

• Does the assay pick up moieties that are not functional because of binding with antidrug antibodies (ADA)?

• Are there matrix interferences?

• What’s the impact if the assay method is changed midway in the development program?
Bioanalytical assays for drug concentrations
- Observations in 20+ case examples of bispecific molecules

• Many products use two reagents each for a domain (anti-A x anti-B).
• Some Fc-containing products use a reagent binding to Fc domain.
• Some use bioassays, e.g., blinatumomab.
• Some use multiple assays in early studies to verify the stability of product in circulation, then select a single assay format to move forward.
• Matrix interference appears common, strategy to address it includes changing assay reagents, acid dissociation, ... etc.
• Assays may be modified over time.

Commentary
- (1) assays with acid dissociation → measure total concentration → need to evaluate suitability for PK-PD analysis
- (2) assays changed → consider bridging strategy to facilitate data integration
Assessing the impact of immunogenicity

- **Immunogenicity assessment is important because anti-drug antibodies (ADA) can impact PK, PD, efficacy, and safety.**

- Are assays sensitive and tolerant to drug concentrations in study samples?
- Do ADA have neutralizing capability and affect the intended functions?
- What part of the bispecific molecule do ADA bind to?
- Is there a potential for cross-reactivity to endogenous proteins?
- More details can be found on published literature, industry whitepapers, and guidance documents.

Status of immunogenicity reporting

- Survey of US prescribing information (up to February 2015)

Reporting status of immunogenicity data components (reported vs. not reported)

<table>
<thead>
<tr>
<th>Component</th>
<th>Reported</th>
<th>Not Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA incidence</td>
<td>108/121 (89%)</td>
<td>NR</td>
</tr>
<tr>
<td>Neutralizing Activity</td>
<td>73/121 (60%)</td>
<td>NR</td>
</tr>
<tr>
<td>Impact on PK</td>
<td>31/121 (26%)</td>
<td>NR</td>
</tr>
<tr>
<td>Impact on Efficacy</td>
<td>59/121 (49%)</td>
<td>NR</td>
</tr>
<tr>
<td>Impact on Safety</td>
<td>73/121 (60%)</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: not reported; ADA: binding, anti-drug antibodies; PK: pharmacokinetics

Wang et al. Manuscript submitted
High concordance rate for ADA impact on PK and efficacy

Impact on PK

Impact on Efficacy

Reported Impact on PK + Efficacy

Concordance PK + Efficacy

Concordance definition:
• ADA+ → higher clearance (lower exposure) & reduced efficacy
• ADA+ → no effect on clearance & no effect on efficacy

The high concordance rate suggests a high potential for PK data to be an early marker of immunogenicity impact on efficacy → Beneficial to plan for coinciding PK and ADA assessment

Wang et al. Manuscript submitted
An example of literature support - PK can be an early marker for ADA impact on efficacy

- ADA+ has higher dropout / lower response rate (starting from ~Week 25).
- ADA+ has lower trough concentrations (starting from ~Week 12).

Figure 4. Dropout Due to Treatment Failure

ADA: anti-drug antibody

Figure 2. Median Concentrations Over Time

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Without ADA</th>
<th>ADA titer 13–100 AU/mL</th>
<th>ADA titer >100 AU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>0</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

No. at risk

- ADA-: 196, 151, 135, 118
- ADA+: 76, 59, 43, 29

Bartelds *et al.* 2011 JAMA
In summary...

• Many bispecific molecules are derived from existing protein therapeutics.

• New issues rise due to new mechanisms of action.
 – Similar experience with single-target products.

• Stay on course – leverage past experiences with mAbs, Fabs, fusion proteins, etc.,
 – Use MABEL / NOAEL approach for FIH dose selection
 – Deploy bioanalytical assays useful for PK-PD correlation and exposure-response (E-R) exploration.
 – Utilize PD markers, if available, for E-R analyses, dose ranging, dose selection.
 – Evaluate immunogenicity impact on PK, PD, efficacy, and safety.
In summary...

• Build upon prior knowledge
 - Better understand differences between hitting one target vs. two targets.
 - Improve understanding along the mechanistic pathways.
 - Invest in evaluating biomarkers and aim to explore relationship to clinical outcomes.
 - Explore innovative approach, e.g., systems pharmacology, as a translational strategy for products with complex mechanism of action (MOA).

• Characterize ADME to inform dosing in general population and specific populations.
Acknowledgements

• Biologics team members
 – Jie Wang, Ph.D.
 – Christine Hon, Pharm.D.
 – Lin Zhou, Ph.D.
 – Lucy Fang, Ph.D. (2011-2013)

• Blinatumomab Clinical Pharmacology Review Team

• DCP3 management
 – Dennis Bashaw, Pharm.D.
 – Hae-Young Ahn, Ph.D.

• Symposium organizers
 – Honghui Zhou, Ph.D.
 – Arnab Mukherjee, Ph.D.

• Authors of cited and many related publications
Thank you