Applications of self-assembling peptides in controlled drug delivery

Sotirios Koutsopoulos, Ph.D.

Problems associated with drug administration
The importance of Control:

• Bio-compatible
• Non-toxic, non-immunogenic
• Bio-degradable
• Easy to handle
• Protect the cargo
• Deliver small, large, hydrophilic and hydrophobic molecules

• Programmed dose and time release for as long as it is required
• Flexibility & patient compliance
• Reduced risk of side effects from overdose

Most common systems
1. Electronic devices e.g., insulin pumps
2. Particle- and matrix-based systems e.g. polymers or inorganic materials
3. Liposomes

World drug delivery market: $17 - 29 billion for 2006
$33 - 67 billion for 2009
$65 - 97 billion for 2013
The importance of Control: 1. Devices

- First controlled drug delivery systems were built in the 1960s
- Insulin reservoir (like a regular syringe)
- Controller (computer chip)
- Glucose sensor
- Infusion device (pump) to deliver insulin to the body through a needle

The importance of Control: 2. Polymer micro- & nano-particles, matrices, and hydrogels

Poly-lactic-co-glycolic acid (PLGA)
Poly-ethylene glycol (PEG)
Poly-phosphoesters
Poly-vinyl alcohol (PVA)
Poly-ethylene oxide (PEO)
....

Clinical studies show:
Immune reaction to polymer surfaces
Degradation products may be toxic
Often toxic initiators are used
Not very efficient for protein delivery

Nanoparticles – microparticles
Composite polymer materials
Micelles
Colloids
Nanogels
Emulsions
Pluronic acid micelles (PEO/PPO)
Thin films
Polymer brushes
Hydrogels
The importance of Control: 3. Liposomes

- Associated with cell toxicity effects
- Immune response in some patients
- Research started in late 1960s
- Not many unique liposome-based drugs (most contain phosphatidylcholine)
- Doxil (1993, ovarian cancer, myeloma)
- Poor industrial reproducibility

Self-assembling peptides

<table>
<thead>
<tr>
<th>Length</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7 nm</td>
<td>2.5 nm</td>
</tr>
<tr>
<td>12-16 aa</td>
<td>5-7 aa</td>
</tr>
</tbody>
</table>

5-7 nm

100-nm
Hydrogel consisting of self-assembling peptides

At physiological conditions
0.15 M NaCl & 3 < pH < 8

Liquid Gel

Hydrogel consisting of self-assembling peptides

Water solution + Drugs

Tissue specific injectable drug release system
Release of model drugs through peptide hydrogels

- **Phenol Red**
 - MW: 354.4

- **8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (3-PSA)**
 - MW: 524.4

- **Bromophenol blue**
 - MW: 691.5

- **Phenol 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (4-PSA)**
 - MW: 610.4

Measure diffusion for 1 week.
Release of model drugs through peptide hydrogels

Slow release depending on charge and MW of the model drug

Release depending on **charge** of the model drug
Release due to specific interactions of molecules with nanofibers
Protein drug delivery

- FDA has approved >200 proteins for therapeutic uses
- In 2014, protein drugs returned a revenue of ca. $70 billion

Large and unstable molecules (structure held by weak forces)
Easily damaged at mild storage conditions
Rapidly eliminated by the body
Some are difficult to obtain in large quantities

Common administration routes are not suitable for proteins

- **Oral** Proteins/enzymes are degraded in the stomach or they are not absorbed through the intestines
- **Skin** Low permeability of large molecules
- **Inhalation** Protein delivery through the lungs is difficult (e.g., Exubera)
- **Injection, subcutaneous or intravenous** Proteins are cleared from circulation (frequent injections)
Controlled release of proteins

Study protein delivery through peptide hydrogels using proteins that:
- are well characterized and widely used
- have a wide range of MW and pI
- have therapeutic interest

<table>
<thead>
<tr>
<th>Protein</th>
<th>MW</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozyme</td>
<td>14.7 kDa</td>
<td>11.0</td>
</tr>
<tr>
<td>Trypsin inhibitor</td>
<td>20.1 kDa</td>
<td>4.6</td>
</tr>
<tr>
<td>BSA</td>
<td>66.0 kDa</td>
<td>5.3</td>
</tr>
<tr>
<td>Human IgG</td>
<td>145.0 kDa</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Fluorescence Correlation Spectroscopy (FCS)

- High sensitivity and resolution (time/spatial)
- Detect molecules inside the hydrogel & in the supernatant
- Measure diffusion coefficients and concentration inside and outside the gel

Volume of detection is 1.5 fL
Protein release experiment

Water solution + Protein = Gel + Protein

Protein release experiment

PBS

Protein release through (RADA)$_4$ hydrogel

慢速释放，主要取决于蛋白质的分子量(MW)
Protein release through (RADA)$_4$ hydrogel

Protein release through peptide hydrogels

(RADA)$_4$ 1.0 %
(KLDL)$_3$ 0.6 %
(RADA)$_4$ 1.0 % (core) + (KLDL)$_3$ 0.6 % (shell)
Protein release through peptide hydrogels

Question:
What is the state of the proteins after being released from the hydrogels?

Study the released proteins:
- Spectroscopy (CD, Fluorescence)
- Activity tests, bioassays

Protein release through peptide hydrogels: CD spectroscopy
Protein release through peptide hydrogels: Fluorescence

Protein release through peptide hydrogels: Biological activity

Measure the hydrolysis of the cell membrane of *M. lysodeiktkus*

Measure the suppression of trypsin activity
Protein release through peptide hydrogels: Biological activity

Measure binding efficiency of monoclonal IgG against antigen

Protein release through peptide hydrogels: Biological activity

Native or released antibodies

Immobilized antigen
Smart hydrogel material for controlled release

Lipid-like self assembling peptides

ac-A₆K-NH₂ (acetyl-AAAAAK-CONH₂)

2.6 nm

KA₆-NH₂ (KA AAAA-CONH₂)

2.4 nm

ac-A₆D-OH (acetyl-AAAAAAD-COOH)

2.6 nm

DA₆-COOH (DAAAAA-COOH)

2.4 nm
Lipid-like self assembling peptide nanovesicles: AFM

![AFM images of nanovesicles](image1.png)

![AFM images of nanovesicles](image2.png)
Lipid-like self assembling peptide nanovesicles: Carboxyfluorescein encapsulation and release

![Graph showing the cumulative CF release over time.]

Lipid-like self assembling peptide nanovesicles: Nile Red integration in the peptide bilayer

![Graph showing the cumulative Nile Red release over time.]

![Fluorescence intensity vs. wavelength graph.]
Lipid-like self assembling peptides: Epithelial cell proliferation

![Graph showing cell proliferation over time with different concentrations of peptides.]

Lipid-like self assembling peptides: Drug absorption

Caco-2 cell monolayer model and rat intestine (everted sacs) are used to predict drug absorption (oral delivery).

![Graph showing FITC-dextran transport over time and permeability to FD-4.]

50% increase
Conclusions

Injectable peptide hydrogel
- Release small molecules & proteins of broad MW (e.g., Lsz, IgG)
- Hydrogel contains up to 99.5% water, active compound loading depends on the solubility of the drug
- Release kinetics depend on hydrogel density
- Functionality assays show that released proteins are active

Lipid-like peptide nanovesicles
- Release of hydrophilic and hydrophobic drugs
- Release kinetics depend on amino acid sequence and drug properties
- Peptides are not cytotoxic
- Increase transport through the epithelial layer

Self-assembling peptides are biocompatible, biodegradable, non-toxic, non-immunogenic, transparent which are ideal for biomedical applications