Modular DSP approaches for complex non-mAB molecules

Dr. Stefan R. Schmidt MBA

SVP Process Science & Production
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Process related impurities</td>
</tr>
<tr>
<td>3</td>
<td>Product related impurities</td>
</tr>
<tr>
<td>4</td>
<td>Virus inactivation</td>
</tr>
<tr>
<td>5</td>
<td>Summary and conclusion</td>
</tr>
</tbody>
</table>
Expertise with a broad spectrum of proteins

- >100 therapeutic proteins produced 1997 - 2016
- 70% monoclonal antibodies and fusion proteins
- >40% biosimilars and biobetters
General considerations for DSP development

Basic requirements
- Protein concentration in intermediates ≥ 4 g L⁻¹
- Process steps at ambient temperature

General process related considerations/requirements
- Stability data on Capture (& Harvest and Intermediates at -20 °C, RT and 5 °C, +/- stirring)
- Aggregation/precipitation propensity (SEC, T₅₈₀nm)
- Contribution of steps for virus removal/inactivation (virus safety concept)

Definition of success criteria
- Overall process yield
- Removal factors of impurities:
 - process related (HCP, DNA, ProtA)
 - product related (fragments, aggregates, isoforms etc.)
- Final DS specification
Concept of modular toolbox

Major impurities?

Sequence of evaluation
- Capture
- pH-titration
- Stability assessment
- Polishing

Schmidt, March 2017
Variety of DSP processes for complex proteins

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
<th>Step 7</th>
<th>Step 8</th>
<th>Step 9</th>
<th>Step 10</th>
<th>g L⁻¹</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcF1</td>
<td>Affinity</td>
<td>pH</td>
<td>AIXE</td>
<td>CIEX</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>88</td>
</tr>
<tr>
<td>FcF2</td>
<td>Affinity</td>
<td>pH</td>
<td>MIX C</td>
<td>MIX A</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>27</td>
</tr>
<tr>
<td>FcF3</td>
<td>DepF</td>
<td>Affinity</td>
<td>pH</td>
<td>DepF</td>
<td>AIXE</td>
<td>CIEX</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td>2.7</td>
<td>43</td>
</tr>
<tr>
<td>FcF4</td>
<td>Affinity</td>
<td>pH</td>
<td>CHT</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>56</td>
</tr>
<tr>
<td>FcF5</td>
<td>Affinity</td>
<td>DepF</td>
<td>CIEX</td>
<td>pH</td>
<td>MIX A</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>42</td>
</tr>
<tr>
<td>FcF6</td>
<td>Affinity</td>
<td>pH</td>
<td>Precip</td>
<td>DepF</td>
<td>CIEX</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>59</td>
</tr>
<tr>
<td>FcF7</td>
<td>Affinity</td>
<td>DepF</td>
<td>pH</td>
<td>CIEX</td>
<td>MIX A</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>43</td>
</tr>
<tr>
<td>Vac1</td>
<td>UF/DF</td>
<td>pH</td>
<td>AIXE</td>
<td>MIX C</td>
<td>UF/DF</td>
<td>AIXE</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>Vac2</td>
<td>UF/DF</td>
<td>AIXE</td>
<td>CIEX</td>
<td>AIXE</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>43</td>
</tr>
<tr>
<td>Enz1</td>
<td>UF/DF</td>
<td>DepF</td>
<td>Affinity</td>
<td>HIC</td>
<td>AIXE</td>
<td>pH</td>
<td>CIEX</td>
<td>VF</td>
<td>UF/DF</td>
<td>0.4</td>
<td>28</td>
</tr>
<tr>
<td>Enz2</td>
<td>MIX C</td>
<td>HIC</td>
<td>CHT</td>
<td>Isopr.</td>
<td>UF/DF</td>
<td>AIXE</td>
<td>VF</td>
<td>UF/DF</td>
<td></td>
<td>1.1</td>
<td>57</td>
</tr>
<tr>
<td>FP1</td>
<td>UF/DF</td>
<td>DepF</td>
<td>Triton</td>
<td>AIXE</td>
<td>HIC</td>
<td>UF/DF</td>
<td>CHT</td>
<td>CIEX</td>
<td>VF</td>
<td>0.7</td>
<td>25</td>
</tr>
<tr>
<td>FP2</td>
<td>AIXE</td>
<td>MIX C</td>
<td>pH</td>
<td>UF/DF</td>
<td>AIXE</td>
<td>CHT</td>
<td>UF/DF</td>
<td>VF</td>
<td></td>
<td>0.1</td>
<td>64</td>
</tr>
</tbody>
</table>
Getting order and structure

© Ursus Wehrli 2011
Modules of DSP unit operations and sequence of steps

<table>
<thead>
<tr>
<th>Conditioning</th>
<th>Capture</th>
<th>Virus</th>
<th>Polishing</th>
<th>Virus & Aliquot</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcF1</td>
<td>Affinity</td>
<td>pH</td>
<td>AIE</td>
<td>CIEX</td>
</tr>
<tr>
<td>FcF2</td>
<td>Affinity</td>
<td>pH</td>
<td>MIX C</td>
<td>MIX A</td>
</tr>
<tr>
<td>FcF3</td>
<td>DepF</td>
<td>Affinity</td>
<td>pH</td>
<td>DepF</td>
</tr>
<tr>
<td>FcF4</td>
<td>Affinity</td>
<td>pH</td>
<td>CHT</td>
<td>DepF</td>
</tr>
<tr>
<td>FcF5</td>
<td>Affinity</td>
<td>DepF</td>
<td>CIEX</td>
<td>pH</td>
</tr>
<tr>
<td>FcF6</td>
<td>Affinity</td>
<td>pH</td>
<td>Precip</td>
<td>DepF</td>
</tr>
<tr>
<td>FcF7</td>
<td>Affinity</td>
<td>DepF</td>
<td>pH</td>
<td>CIEX</td>
</tr>
<tr>
<td>Vac1</td>
<td>UF/DF</td>
<td>pH</td>
<td>AIE</td>
<td>MIX C</td>
</tr>
<tr>
<td>Vac2</td>
<td>UF/DF</td>
<td>AIE</td>
<td>CIEX</td>
<td>AIE</td>
</tr>
<tr>
<td>Enz1</td>
<td>UF/DF</td>
<td>DepF</td>
<td>Affinity</td>
<td>HIC</td>
</tr>
<tr>
<td>Enz2</td>
<td>MIX C</td>
<td>HIC</td>
<td>CHT</td>
<td>Isop</td>
</tr>
<tr>
<td>FP1</td>
<td>UF/DF</td>
<td>DepF</td>
<td>Triton</td>
<td>AIE</td>
</tr>
<tr>
<td>FP2</td>
<td>AIE</td>
<td>MIX C</td>
<td>pH</td>
<td>UF/DF AIE</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction
2. Process related impurities
3. Product related impurities
4. Virus inactivation
5. Summary and conclusion
FP2: Potential folding pathways leading to variants

- Tetramer formation depends on linker length and pH
- Linker can be target for fragmentation or truncation
- Some intermediates occur in folding pathway
- Monomeric byproducts can be suppressed by additives in media
- Aggregate formation still possible

Closed monomer

Domain swapped tetramer

Kipriyanov et al. JMB, (1999), 293, 41-56
FP2: HCP removal & yield

Schmidt, March 2017
FP2: Effect of low pH and incubation

- At least 24 h are required for complete refolding and maximal restoration of activity
- Incubation at 20 °C leads to fragmentation (presence of acidic protease)
- In the process FP2 is incubated at 2-8 °C for 48 h
HCP removal by precipitation with caprylyc acid

- Precipitate can be removed by depth filtration
- Concentrations >3 mmol L\(^{-1}\) sufficient for virus inactivation
- At high concentration yield is reduced

- Optimization process:
 - Titration of pH and CA concentration
 - Select concentration that keeps API still soluble

- CA impacts subsequent viral removal steps!

Schmidt, March 2017
FcF6: HCP removal by precipitation with caprylyc acid

- HCP reduction already at low conc. of CA
- pH only has influence on aggregation
- Predictable model
Caprylic acid-induced impurity precipitation

HCP Clearance from a monoclonal antibody: Influence of pH and CA concentration

Robust HCP clearance at high mAb yield
Agenda

1. Introduction
2. Process related impurities
3. Product related impurities
4. Virus inactivation
5. Summary and conclusion
Example of product related impurities (mAb)

1. Full antibody
2. Incomplete antibody
3. Paired heavy chain
4. Half antibody
5. Free heavy chain
6. Free light chain

(non-red SDS-PAGE, silverstain)

Aggregates
FcF7: Peak cut in C20 eliminates incomplete molecules

Monomer Dimer Half-trimer Trimer
Product related impurities

<table>
<thead>
<tr>
<th></th>
<th>Aggregates</th>
<th>Truncations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HMW</td>
<td>Mono</td>
</tr>
<tr>
<td>pH</td>
<td>8.5</td>
<td>91.5</td>
</tr>
<tr>
<td>CHT</td>
<td>15.9</td>
<td>84.1</td>
</tr>
<tr>
<td>VF</td>
<td>1.2</td>
<td>98.8</td>
</tr>
<tr>
<td>UF/DF</td>
<td>1.1</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>98.8</td>
</tr>
</tbody>
</table>

- FcF4 seems to be low pH sensitive
- Aggregates can be successfully removed by CHT chromatography
- Non mammalian Vac1 contains a lot of LMW species (clipped isoforms) from the beginning
- LMW have lower net charge ➔ elimination in subsequent ion exchange chromatography
FP1: Glyco-isoform separation

Background:
- Molecule: highly glycosylated fusion protein
- Resin: DEAE Sepharose FF

Purpose of the step:
- Removal of HCP and DNA
- Removal of low glycosylated isoforms

Results:
- DNA reduction factor: 4 log
- Glycosylation: 100%
- Yield: 45%

Load \[\text{RP-HPLC}\]
Elute
Agenda

1. Introduction
2. Process related impurities
3. Product related impurities
4. Virus inactivation
5. Summary and conclusion
Virus inactivation alternatives and issues

- pH < 4 (key step for elution of mAbs/FcF from Protein A resin)
 - Can lead to denaturation and proteolysis
 - Might induce aggregation during high protein concentration at elution
- Detergents (see next slide)
- Organic solvents (see next slide)

Alternatives
- Arginine solutions >0.5 mol L\(^{-1}\)
- UV light (254 nm)
 - Might cause protein-DNA aggregates
- Gamma irradiation (>25 kGy)
 - Access to source and equipment
Virus inactivation with detergents (FP1)

- Detergent (e.g. 1 % Triton X-100, 0.3 % TNBP, 1 % Tween 80) for more than 4 h, at RT
 - Tend to oxidation and byproducts
 - permitted residual level 3.25 ppm ➔ removal in subsequent steps

Comparison of 2 experiments ➔ Reproducible results
Virus inactivation with organic solvent (Enz2)

- Variables: Conc, T, t
- Some effect on activity
- Low impact on oligomer
- Higher T more effective
- 180 min are sufficient

14.5% 2-propanol, 22°C
Agenda

1. Introduction
2. Process related impurities
3. Product related impurities
4. Virus inactivation
5. Summary and conclusion
Summary modular approach

- **General principles**
 - Identify major impurities in harvest ➔ select suitable analytic method
 - Assess molecular properties
 - Find specific capture with reasonable capacity

- **Frontload stability studies** (pH, mechanical, temperature, proteases)
 - Utilize that knowledge for definition of virus safety strategy

- **HCP issues**
 - Reduce HCP levels as early on ➔ otherwise reduction of column capacity
 - Think about alternative methods (e.g. caprylic acid precipitation)

- **Aggregation**
 - Identify underlying cause, eliminate according to properties (charge, hydrophobicity, size…)

- **Product related impurities**
 - Eliminate first mis-assembled variant, then aggregates and truncations
References

Kipriyanov et al., JMB, (1999), 293, 41-56
Data from our process development and production teams

We are hiring!

Scientist: Process Science DSP
Scientist: Process Science USP
Senior Scientist: Cell-Line Development
Director: BioProcess Science
Director: Process Development DSP
Director: Process Unit DSP Production

More than 50 open positions, see under: https://www.rentschler.de/careers/job-offers/
Or contact me: Stefan.Schmidt@Rentschler.de