Conventional versus Physiologically-Based (PB)-IVIVC: Revisiting Some Successful and Failed Conventional IVIVC Cases with PB-IVIVC

Nikunj Patel, Senior Research Scientist
Simcyp (a Certara Company)

AAPS Annual Meeting, 4th November 2014
How to Develop IVIVC?

- **In Vivo Dissolution**
 - Graph showing % Dissolved vs Time (h)

- **In Vitro Dissolution**
 - Graph showing % Dissolved vs Time (h)

- **Plasma Concentration**
 - Graph showing Plasma Conc vs Time (h)

DECONVOLUTION

© Copyright 2014 Certara, L.P. All rights reserved.
What is Deconvolution?

\[\text{Response} = \text{Input} \times \text{System behaviour} \]

If you know \(R \) and \(S \), you can find \(I \)

Input is the rate of release/dissolution from administered formulation

System behaviour is how the human body processes the drug (Disposition)

Response is the result (Plasma Concentration-time profile) of what happens (system behaviour) to the drug after a particular input (formulation) is given to the system

What you deconvolute and its quality depends on how you define the system and parameterise it
Deconvolution: Limitations of Conventional Methods

- Wagner-Nelson and Loo-Riegelman Methods
 - Assumes human body (system) as one or two compartments
 - Cannot be used for nonlinear elimination
 - Deconvolutes systemic input rate which is a composite function of dissolution + GI Transit + Permeation + First Pass

- Numerical Methods
 - No physiological assumptions but mathematical assumptions: input site is the same for all formulations and input rate is constant (infusion) between two time points
 - Depending on the UIR used, it deconvolutes a composite function of dissolution + GI Transit + Permeation + First Pass

Langenbucher (2003) EJPB 56(3), 429
Mechanistic Deconvolution: e.g. ADAM Model

- in vivo dissolution is deconvoluted separately from GIT transit, permeation, gut wall metabolism and first pass liver extraction

- Gastric Emptying

- Luminal Transit

- PBPK DISTRIBUTION MODEL

- Portal Vein

- LIVER

- Duodenum, Jejunum I, Jejunum II, Ileum I, Ileum II, Ileum III, Ileum IV, Colon

- Dissolution

- Absorption Efflux/Influx

- Metabolism

- Degradation
Advantages of Physiologically-based IVIVCs

Mechanistic Deconvolution

In vitro

Simple IVIVC Function

In vivo

Conventional Deconvolution

In vitro

Complex IVIVC Function

In vivo

Simple IVIVCs are easy-to-interpret and important during formulation optimisation

Dissolution Permeation Systemic Input
Case study 1: IVIVC for Metoprolol ER formulations

Reported Model 1: Numerical Deconvolution with Oral Solution as UIR

In vitro in vivo correlation

Reported Model 2: FPE Parent / Metabolite Model

In vitro in vivo correlation

Two-Stage Sequential Approach using Linear IVIVC

A. Physiologically based Method (%Dissolved)

\[y = 0.95x + 2.7809 \]
\[R^2 = 0.9883 \]

B. FPE method Sirisuth & Eddington 2002

\[y = 1.1579x - 0.2493 \]
\[R^2 = 0.9244 \]

C. ND Method Eddington et al. 1998

\[y = 1.1402x - 0.201 \]
\[R^2 = 0.9592 \]

<table>
<thead>
<tr>
<th>Validation</th>
<th>Formulation</th>
<th>%PE in AUC</th>
<th>%PE in Cmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>Fast</td>
<td>4.52</td>
<td>3.97</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>5.22</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>Slow</td>
<td>-0.76</td>
<td>-5.67</td>
</tr>
<tr>
<td></td>
<td>AAPE</td>
<td>3.5</td>
<td>4.77</td>
</tr>
<tr>
<td>External</td>
<td>I (3 kg)</td>
<td>6.13</td>
<td>8.28</td>
</tr>
<tr>
<td></td>
<td>II (50 kg)</td>
<td>-2.2</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>III (3kg Other)</td>
<td>-1.3</td>
<td>-6.99</td>
</tr>
<tr>
<td></td>
<td>IV (80 kg)</td>
<td>1.3</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>V (Bead Cap)</td>
<td>2.5</td>
<td>5.30</td>
</tr>
<tr>
<td></td>
<td>AAPE</td>
<td>2.69</td>
<td>10.69</td>
</tr>
</tbody>
</table>

Patel et al. 2014 9th W PBP meeting, Lisbon
Deconvolution methods comparison

A. Physiologically based Method (%Dissolved)

\[y = 0.95x + 2.7809 \]
\[R^2 = 0.9883 \]

B. FPE method Sirisuth & Eddington 2002

\[y = 1.1579x - 0.2493 \]
\[R^2 = 0.9244 \]

C. ND Method Eddington et al. 1998

\[y = 1.1402x - 0.201 \]
\[R^2 = 0.9592 \]

ND method deconvolutes fraction absorbed (Fa(t)) rather than fraction dissolved (F_diss(t)) even when oral solution is used as UIR whereas PB method deconvolutes all processes involved in absorption – F_diss(t), Fa(t), F_pv(t) and F(t)
Why fast release formulation not deconvoluted well with ND?

A. Physiologically based Method (%Dissolved)

\[y = 0.95x + 2.7809 \]
\[R^2 = 0.9883 \]

B. FPE method Sirisuth & Eddington 2002

\[y = 1.1579x - 0.2493 \]
\[R^2 = 0.9244 \]

C. ND Method Eddington et al. 1998

\[y = 1.1402x - 0.201 \]
\[R^2 = 0.9592 \]

Gastric emptying controls significant proportion of absorption profile region for Fast formulation.
Physiologically Based Deconvolution at a Population Level

- Exploratory analysis of the individual subject PK data of the Metoprolol oral formulations indicated significant BS and WS variability
- PBPK to identify sources of variability
 - Given the small duration of the clinical study, only BS variability and assumed the WS variability in disposition parameters to be negligible.
 - WS as well as BS variability in dissolution and GI transit was considered

Deconvolution with WS and BS variability included

UIR Characterisation

Disposition BS Variability

Peff CL Vss

In vivo release/dissolution from Medium formulation is more variable which corresponds to partial AUC analysis of PK profiles

Poster Number **M1328 – B Mistry et al, AAPS AM, 2014**

© Copyright 2014 Certara, L.P. All rights reserved.
Physiologically Based Deconvolution at a Population Level

Assuming individual subject GI Transit (GET) is equal to Pop. Mean

Considering WS and BS variability in GI Transit (GET) for population

Poster Number M1328 – B Mistry et al, AAPS AM, 2014
Case Study 2: Diltiazem (BCS I, BDDCS II) CR products

- Complexities involved
 - Gut-wall metabolism (formulation-dependent non-linearity)
 - Auto-inhibition of CYP3A4 by DTZ and its metabolite

Numerical Deconvolution IVIVC

- Formula: $y = 0.9765x + 2.7752$
- $R^2 = 0.9202$

PB-IVIVC

- Formula: $y = 0.9544x + 0.7355$
- $R^2 = 0.9942$

<table>
<thead>
<tr>
<th>Formulation</th>
<th>%PE in AUC PB</th>
<th>%PE in Cmax PB</th>
<th>%PE in AUC ND*</th>
<th>%PE in Cmax ND*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>8.33</td>
<td>94</td>
<td>8.63</td>
<td>77.8</td>
</tr>
<tr>
<td>Medium</td>
<td>-1.04</td>
<td>57.2</td>
<td>12.31</td>
<td>75.9</td>
</tr>
<tr>
<td>Slow</td>
<td>-13.65</td>
<td>47.5</td>
<td>-5.05</td>
<td>65.9</td>
</tr>
</tbody>
</table>

Type of IVIVC

- Linear (PB) and Non-linear (ND)

When all 3 formulations were used for IVIVC development.

Sirisuth et al, 2002 Biopharm Drug Dispos
Diltiazem IVIVC: Analysis of Results

Fast - Deconvoluted in vivo profiles

Medium - Deconvoluted in vivo profiles

Slow - Deconvoluted in vivo profiles

Formulation Fast - IVIVC Chart

Formulation Medium - IVIVC Chart

Formulation Slow - IVIVC Chart

© Copyright 2014 Certara, L.P. All rights reserved.
Diltiazem: Considering auto-inhibition

- Is auto-inhibition clinically significant?

Tsao et al. 1990 “DTZ half-life was 50-100% higher after MD than SD”

Is an IVIVC or bio-equivalence established based upon a single dose valid at steady state for a drug with formulation-dependent first-pass and mechanism-based enzyme auto-inhibition?
Multi-dose studies for MR formulations

- The CHMP NfG on Modified Release Oral and transdermal Dosage Forms requires a multiple dose study for prolonged release products for drugs expected to show accumulation*

- For Diltiazem, accumulation is expected due to reduced first-pass and systemic clearance due to auto-inhibition but the dissolution is not expected to accumulate for Fast and Medium Release formulations

- PBPK models dissolution and absorption as separate processes hence allows simulation of MR formulation at steady state scenario after multi-dosing and estimate accumulation

- Can PB-IVIVC help to simulate such studies?

Simulating SS exposure of ER-Diltiazem

Such IVIVC linked PBPK simulations could help to evaluate exposure at steady state for ER products based upon single dose clinical studies.
Case study 3: IVIVC for Tramadol ER Formulation

In Vitro In Vivo Correlation

Failed to predict lower bioavailability of slow formulation

Linear Model - Time scaled Extended Model

US Patent 8158147; CDER, 2004, Tramadol Extended release tablets
PB-IVIVC: Two-Stage Sequential Approach using Linear IVIVC

Internal Validation

<table>
<thead>
<tr>
<th>Validation</th>
<th>Formulation</th>
<th>AUC(_{0-t}) (ng/mL.h)</th>
<th>Cmax (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs/ Pred/ %PE</td>
<td>Obs/ Pred/ %PE</td>
<td></td>
</tr>
<tr>
<td>Fast-Formulation</td>
<td>2829.7451/2884.5825/-1.94</td>
<td>161.3640/139.9631/13.26</td>
<td></td>
</tr>
<tr>
<td>Internal Med Formulation</td>
<td>2746.3562/2518.9773/8.28</td>
<td>126.2574/118.4506/6.18</td>
<td></td>
</tr>
<tr>
<td>Slow Formulation</td>
<td>2331.2512/2245.0901/3.70</td>
<td>103.1680/102.3100/0.83</td>
<td></td>
</tr>
</tbody>
</table>

External Validation

<table>
<thead>
<tr>
<th>Validation</th>
<th>Formulation</th>
<th>AUC(_{0-t}) (ng/mL.h)</th>
<th>Cmax (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs/ Pred/ %PE</td>
<td>Obs/ Pred/ %PE</td>
<td></td>
</tr>
<tr>
<td>External EXTR Med Formulation</td>
<td>5270.2065/5607.0176/-6.39</td>
<td>281.9600/273.6927/2.93</td>
<td></td>
</tr>
<tr>
<td>EXTR Slow Formulation</td>
<td>4662.9282/4673.4829/-0.23</td>
<td>233.0400/231.7150/0.57</td>
<td></td>
</tr>
</tbody>
</table>

UL & LL Dissolution Specifications

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Formulation</th>
<th>AUC(_{0-t}) (ng/mL.h)</th>
<th>Cmax (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs/ Pred/ %PE</td>
<td>Obs/ Pred/ %PE</td>
<td></td>
</tr>
<tr>
<td>Dissolution LL Disso Specs</td>
<td>2746.3562/2283.3879/16.86</td>
<td>126.2574/117.1461/7.22</td>
<td></td>
</tr>
<tr>
<td>UL Disso Specs</td>
<td>2746.3562/2843.2808/-3.53</td>
<td>126.2574/137.0588/-8.56</td>
<td></td>
</tr>
</tbody>
</table>

Poster Number T3273 – S Pathak et al, AAPS AM, 2014
Application of Absorption Modelling to Predict Virtual Bioequivalence

Upper, Target and Lower dissolution profiles of Tramadol ER Formulation

Predicted Plasma profiles in virtual population using SimCYP PBPK Modelling

Inter-occasional variability incorporated before subjecting it to BE

Bioequivalence was determined using Phoenix BE module
Objections to More Mechanistic Models

1 – Data hungry!
System vs drug/formulation data?

2- Makes many assumptions!
Assumptions are declared; unlike other models

3- It is not transparent!
Contradiction with previous item!

4- Does not add too much value!
Most of the value is in “internal facilitation” and “informed decision making”

5- Other modelling types can be done too!
Other models by their nature cannot go beyond the data which is used to drive them (no extrapolation)

Slide Courtesy - Amin Rostami Hodjegan (Uni Manchester)
Acknowledgements

• Simcyp
 – Shriram Pathak
 – David Turner
 – Sebastian Polak
 – Masoud Jamei

• University of Manchester
 – Amin Rostami-Hodjegan (Seconded at Simcyp)

• US FDA
 – Bipin Mistry
 – Marilyn Martinez

• Jagiellonian University
 – Aleksander Mendyk (Rivivc modelling)

• Simcyp Consortium
Thank you for your attention